Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Plant Genome ; : e20447, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628142

RESUMO

Sesame (Sesamum indicum L.) is an ancient oilseed crop belonging to the family Pedaliaceae and a globally cultivated crop for its use as oil and food. In this study, 2496 sesame accessions, being conserved at the National Genebank of ICAR-National Bureau of Plant Genetic Resources (NBPGR), were genotyped using genomics-assisted double-digest restriction-associated DNA sequencing (ddRAD-seq) approach. A total of 64,910 filtered single-nucleotide polymorphisms (SNPs) were utilized to assess the genome-scale diversity. Applications of this genome-scale information (reduced representation using restriction enzymes) are demonstrated through the development of a molecular core collection (CC) representing maximal SNP diversity. This information is also applied in developing a mid-density panel (MDP) comprising 2515 hyper-variable SNPs, representing almost equally the genic and non-genic regions. The sesame CC comprising 384 accessions, a representative set of accessions with maximal diversity, was identified using multiple criteria such as k-mer (subsequence of length "k" in a sequence read) diversity, observed heterozygosity, CoreHunter3, GenoCore, and genetic differentiation. The coreset constituted around 15% of the total accessions studied, and this small subset had captured >60% SNP diversity of the entire population. In the coreset, the admixture analysis shows reduced genetic complexity, increased nucleotide diversity (π), and is geographically distributed without any repetitiveness in the CC germplasm. Within the CC, India-originated accessions exhibit higher diversity (as expected based on the center of diversity concept), than those accessions that were procured from various other countries. The identified CC set and the MDP will be a valuable resource for genomics-assisted accelerated sesame improvement program.

2.
Plant Physiol Biochem ; 206: 108166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039586

RESUMO

Extensive chromium (Cr) release into water and soil severely impairs crop productivity worldwide. Nanoparticle (NP) technology has shown potential for reducing heavy metal toxicity and improving plant physicochemical profiles. Herein, we investigated the effects of exogenous zinc oxide NPs (ZnO-NPs) on alleviating Cr stress in Cr-sensitive and tolerant chickpea genotypes. Hydroponically grown chickpea plants were exposed to Cr stress (0 and 120 µM) and ZnO-NPs (25 µM, 20 nm size) twice at a 7-day interval. Cr exposure reduced physiochemical profiles, ion content, cell viability, and gas exchange parameters, and it increased organic acid exudate accumulation in roots and the Cr content in the roots and leaves of the plants. However, ZnO-NP application significantly increased plant growth, enzymatic activities, proline, total soluble sugar, and protein and gas exchange parameters and reduced malondialdehyde and hydrogen peroxide levels, Cr content in roots, and organic acid presence to improve root cell viability. This study provides new insights into the role of ZnO-NPs in reducing oxidative stress along with Cr accumulation and mobility due to low levels of organic acids in chickpea roots. Notably, the Cr-tolerant genotype exhibited more pronounced alleviation of Cr stress by ZnO-NPs. These findings highlight the potential of ZnO-NP in regulating plant growth, reducing Cr accumulation, and promoting sustainable agricultural development.


Assuntos
Cicer , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Cromo/toxicidade , Óxido de Zinco/farmacologia , Cicer/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Nanopartículas/química , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade
4.
Sci Rep ; 13(1): 17152, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821558

RESUMO

Pearl millet (Pennisetum glaucum [L.] R. Br.) is a nutrient-dense, relatively drought-tolerant cereal crop cultivated in dry regions worldwide. The crop is under-researched, and its grain yield is low (< 0.8 tons ha-1) and stagnant in the major production regions, including Burkina Faso. The low productivity of pearl millet is mainly attributable to a lack of improved varieties, Striga hermonthica [Sh] infestation, downy mildew infection, and recurrent heat and drought stress. Developing high-yielding and Striga-resistant pearl millet varieties that satisfy the farmers' and market needs requires the identification of yield-promoting genes linked to economic traits to facilitate marker-assisted selection and gene pyramiding. The objective of this study was to undertake genome-wide association analyses of agronomic traits and Sh resistance among 150 pearl millet genotypes to identify genetic markers for marker-assisted breeding and trait introgression. The pearl millet genotypes were phenotyped in Sh hotspot fields and screen house conditions. Twenty-nine million single nucleotide polymorphisms (SNPs) initially generated from 345 pearl millet genotypes were filtered, and 256 K SNPs were selected and used in the present study. Phenotypic data were collected on days to flowering, plant height, number of tillers, panicle length, panicle weight, thousand-grain weight, grain weight, number of emerged Striga and area under the Striga number progress curve (ASNPC). Agronomic and Sh parameters were subjected to combined analysis of variance, while genome-wide association analysis was performed on phenotypic and SNPs data. Significant differences (P < 0.001) were detected among the assessed pearl millet genotypes for Sh parameters and agronomic traits. Further, there were significant genotype by Sh interaction for the number of Sh and ASNPC. Twenty-eight SNPs were significantly associated with a low number of emerged Sh located on chromosomes 1, 2, 3, 4, 6, and 7. Four SNPs were associated with days-to-50%-flowering on chromosomes 3, 5, 6, and 7, while five were associated with panicle length on chromosomes 2, 3, and 4. Seven SNPs were linked to thousand-grain weight on chromosomes 2, 3, and 6. The putative SNP markers associated with a low number of emerged Sh and agronomic traits in the assessed genotypes are valuable genomic resources for accelerated breeding and variety deployment of pearl millet with Sh resistance and farmer- and market-preferred agronomic traits.


Assuntos
Pennisetum , Striga , Pennisetum/genética , Locos de Características Quantitativas , Striga/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Grão Comestível/genética
5.
Commun Biol ; 6(1): 902, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667032

RESUMO

High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D2B1-P1-P5) assembly has a contig N50 ~ 7,000-fold (126 Mb) compared to the previous version and better alignment in centromeric regions. Comparative genome analyses of these three lines clearly demonstrate a high level of collinearity and multiple structural variations, including inversions greater than 1 Mb. Differential genes in improved Tift genome are enriched for serine O-acetyltransferase and glycerol-3-phosphate metabolic process which play an important role in improving the nutritional quality of seed protein and disease resistance in plants, respectively. Multiple marker-trait associations are identified for a range of agronomic traits, including grain yield through genome-wide association study. Improved genome assemblies and marker resources developed in this study provide a comprehensive framework/platform for future applications such as marker-assisted selection of mono/oligogenic traits as well as whole-genome prediction and haplotype-based breeding of complex traits.


Assuntos
Pennisetum , Pennisetum/genética , Embaralhamento de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Agricultura
6.
Life (Basel) ; 13(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37629524

RESUMO

Sequencing technologies have rapidly evolved over the past two decades, and new technologies are being continually developed and commercialized. The emerging sequencing technologies target generating more data with fewer inputs and at lower costs. This has also translated to an increase in the number and type of corresponding applications in genomics besides enhanced computational capacities (both hardware and software). Alongside the evolving DNA sequencing landscape, bioinformatics research teams have also evolved to accommodate the increasingly demanding techniques used to combine and interpret data, leading to many researchers moving from the lab to the computer. The rich history of DNA sequencing has paved the way for new insights and the development of new analysis methods. Understanding and learning from past technologies can help with the progress of future applications. This review focuses on the evolution of sequencing technologies, their significant enabling role in generating plant genome assemblies and downstream applications, and the parallel development of bioinformatics tools and skills, filling the gap in data analysis techniques.

7.
Genes (Basel) ; 14(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37510384

RESUMO

Assessing the genetic diversity and population structure of cultivated sorghum is important for heterotic grouping, breeding population development, marker-assisted cultivar development, and release. The objectives of the present study were to assess the genetic diversity and deduce the population structure of 200 sorghum accessions using diversity arrays technology (DArT)-derived single nucleotide polymorphism (SNP) markers. The expected heterozygosity values ranged from 0.10 to 0.50 with an average of 0.32, while the average observed heterozygosity (0.15) was relatively low, which is a typical value for autogamous crops species like sorghum. Moderate polymorphic information content (PIC) values were identified with a mean of 0.26, which indicates the informativeness of the chosen SNP markers. The population structure and cluster analyses revealed four main clusters with a high level of genetic diversity among the accessions studied. The variation within populations (41.5%) was significantly higher than that among populations (30.8%) and between samples within the structure (27.7%). The study identified distantly related sorghum accessions such as SAMSORG 48, KAURA RED GLUME; Gadam, AS 152; CSRO1, ICNSL2014-062; and YALAI, KAFI MORI. The accessions exhibited wide genetic diversity that will be useful in developing new gene pools and novel genotypes for West Africa sorghum breeding programs.


Assuntos
Polimorfismo de Nucleotídeo Único , Sorghum , Polimorfismo de Nucleotídeo Único/genética , Variação Genética/genética , Sorghum/genética , Melhoramento Vegetal , Genótipo , Grão Comestível
8.
PLoS One ; 18(6): e0286599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267340

RESUMO

To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.


Assuntos
Sesamum , Sesamum/genética , Genoma , Genótipo , Análise de Sequência de DNA/métodos , Sequência de Bases
9.
Plant Physiol Biochem ; 200: 107767, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37220675

RESUMO

Chromium (Cr), a highly toxic redox-active metal cation in soil, seriously threatens global agriculture by affecting nutrient uptake and disturbing various physio-biochemical processes in plants, thereby reducing yields. Here, we examined the effects of different concentrations of Cr alone and in combination with hydrogen sulfide (H2S) application on the growth and physio-biochemical performance of two mungbeans (Vigna radiata L.) varieties, viz. Pusa Vishal (PV; Cr tolerant) and Pusa Ratna (PR; Cr sensitive), growing in a pot in hydroponics. Plants were grown in the pot experiment to examine their growth, enzymatic and non-enzymatic antioxidant levels, electrolyte balance, and plasma membrane (PM) H+-ATPase activity. Furthermore, root anatomy and cell death were analysed 15 days after sowing both varieties in hydroponic systems. The Cr-induced accumulation of reactive oxygen species caused cell death and affected the root anatomy and growth of both varieties. However, the extent of alteration in anatomical features was less in PV than in PR. Exogenous application of H2S promoted plant growth, thereby improving plant antioxidant activities and reducing cell death by suppressing Cr accumulation and translocation. Seedlings of both cultivars treated with H2S exhibited enhanced photosynthesis, ion uptake, glutathione, and proline levels and reduced oxidative stress. Interestingly, H2S restricted the translocation of Cr to aerial parts of plants by improving the nutrient profile and viability of root cells, thereby relieving plants from oxidative bursts by activating the antioxidant machinery through triggering the ascorbate-glutathione cycle. Overall, H2S application improved the nutrient profile and ionic homeostasis of Cr-stressed mungbean plants. These results highlight the importance of H2S application in protecting crops against Cr toxicity. Our findings can be utilised to develop management strategies to improve heavy metal tolerance among crops.


Assuntos
Sulfeto de Hidrogênio , Vigna , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Vigna/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cromo/toxicidade , Estresse Oxidativo , Glutationa/metabolismo , Produtos Agrícolas/metabolismo
10.
Front Plant Sci ; 14: 1143512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008459

RESUMO

Due to evolutionary divergence, sorghum race populations exhibit significant genetic and morphological variation. A k-mer-based sorghum race sequence comparison identified the conserved k-mers of all 272 accessions from sorghum and the race-specific genetic signatures identified the gene variability in 10,321 genes (PAVs). To understand sorghum race structure, diversity and domestication, a deep learning-based variant calling approach was employed in a set of genotypic data derived from a diverse panel of 272 sorghum accessions. The data resulted in 1.7 million high-quality genome-wide SNPs and identified selective signature (both positive and negative) regions through a genome-wide scan with different (iHS and XP-EHH) statistical methods. We discovered 2,370 genes associated with selection signatures including 179 selective sweep regions distributed over 10 chromosomes. Co-localization of these regions undergoing selective pressure with previously reported QTLs and genes revealed that the signatures of selection could be related to the domestication of important agronomic traits such as biomass and plant height. The developed k-mer signatures will be useful in the future to identify the sorghum race and for trait and SNP markers for assisting in plant breeding programs.

11.
Heliyon ; 9(1): e12974, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36747944

RESUMO

A plant breeding program involves hundreds of experiments, each having number of entries, genealogy information, linked experimental design, lists of treatments, observed traits, and data analysis. The traditional method of arranging breeding program information and data recording and maintenance is not centralized and is always scattered in different file systems which is inconvenient for retrieving breeding information resulting in poor data management and the loss of crucial data. Data administration requires a significant amount of manpower and resources to maintain nurseries, trials, germplasm lines, and pedigree records. Further, data transcription in scattered spreadsheets and files leads to nomenclature and typing mistakes, which affects data analysis and selection decisions in breeding programs. The accurate data recording and management tools could improve the efficiency of breeding programs. Recent interventions in data management using computer-based breeding databases and informatics applications and tools have made the breeder's life easier. Because of its digital nature, the data obtained is improved even further, allowing for the acquisition of images, voice recording and other specific data kinds. Public breeding programs are far behind the industry in the use of data management tools and softwares. In this article, we have compiled the information on available data recording tools and breeding data management softwares with major emphasis on potato breeding data management.

12.
Front Nutr ; 9: 884381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438771

RESUMO

Pearl millet (Pennisetum glaucum L.), an important source of iron (Fe) and zinc (Zn) for millions of families in dryland tropics, helps in eradicating micronutrient malnutrition. The crop is rich in Fe and Zn, therefore, identification of the key genes operating the mineral pathways is an important step to accelerate the development of biofortified cultivars. In a first-of-its-kind experiment, leaf and root samples of a pearl millet inbred ICMB 1505 were exposed to combinations of Fe and Zn stress conditions using the hydroponics method, and a whole-genome transcriptome assay was carried out to characterize the differentially expressed genes (DEGs) and pathways. A total of 37,093 DEGs under different combinations of stress conditions were identified, of which, 7,023 and 9,996 DEGs were reported in the leaf and root stress treatments, respectively. Among the 10,194 unique DEGs, 8,605 were annotated to cellular, biological, and molecular functions and 458 DEGs were assigned to 39 pathways. The results revealed the expression of major genes related to the mugineic acid pathway, phytohormones, chlorophyll biosynthesis, photosynthesis, and carbohydrate metabolism during Fe and Zn stress. The cross-talks between the Fe and Zn provided information on their dual and opposite regulation of key uptake and transporter genes under Fe and Zn deficiency. SNP haplotypes in rice, maize, sorghum, and foxtail millet as well as in Arabidopsis using pearl millet Fe and Zn responsive genes could be used for designing the markers in staple crops. Our results will assist in developing Fe and Zn-efficient pearl millet varieties in biofortification breeding programs and precision delivery mechanisms to ameliorate malnutrition in South Asia and Sub-Saharan Africa.

13.
Front Plant Sci ; 13: 963394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971511

RESUMO

Extensive use of chromium (Cr) in anthropogenic activities leads to Cr toxicity in plants causing serious threat to the environment. Cr toxicity impairs plant growth, development, and metabolism. In the present study, we explored the effect of NaHS [a hydrogen sulfide; (H2S), donor] and silicon (Si), alone or in combination, on two chickpea (Cicer arietinum) varieties (Pusa 2085 and Pusa Green 112), in pot conditions under Cr stress. Cr stress increased accumulation of Cr reduction of the plasma membrane (PM) H+-ATPase activity and decreased in photosynthetic pigments, essential minerals, relative water contents (RWC), and enzymatic and non-enzymatic antioxidants in both the varieties. Exogenous application of NaHS and Si on plants exposed to Cr stress mitigated the effect of Cr and enhanced the physiological and biochemical parameters by reducing Cr accumulation and oxidative stress in roots and leaves. The interactive effects of NaHS and Si showed a highly significant and positive correlation with PM H+-ATPase activity, photosynthetic pigments, essential minerals, RWC, proline content, and enzymatic antioxidant activities (catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase, and monodehydroascorbate reductase). A similar trend was observed for non-enzymatic antioxidant activities (ascorbic acid, glutathione, oxidized glutathione, and dehydroascorbic acid level) in leaves while oxidative damage in roots and leaves showed a negative correlation. Exogenous application of NaHS + Si could enhance Cr stress tolerance in chickpea and field studies are warranted for assessing crop yield under Cr-affected area.

14.
J Exp Bot ; 73(22): 7255-7272, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36006832

RESUMO

'QTL-hotspot' is a genomic region on linkage group 04 (CaLG04) in chickpea (Cicer arietinum) that harbours major-effect quantitative trait loci (QTLs) for multiple drought-adaptive traits, and it therefore represents a promising target for improving drought adaptation. To investigate the mechanisms underpinning the positive effects of 'QTL-hotspot' on seed yield under drought, we introgressed this region from the ICC 4958 genotype into five elite chickpea cultivars. The resulting introgression lines (ILs) and their parents were evaluated in multi-location field trials and semi-controlled conditions. The results showed that the 'QTL-hotspot' region improved seed yield under rainfed conditions by increasing seed weight, reducing the time to flowering, regulating traits related to canopy growth and early vigour, and enhancing transpiration efficiency. Whole-genome sequencing data analysis of the ILs and parents revealed four genes underlying the 'QTL-hotspot' region associated with drought adaptation. We validated diagnostic KASP markers closely linked to these genes using the ILs and their parents for future deployment in chickpea breeding programs. The CaTIFY4b-H2 haplotype of a potential candidate gene CaTIFY4b was identified as the superior haplotype for 100-seed weight. The candidate genes and superior haplotypes identified in this study have the potential to serve as direct targets for genetic manipulation and selection for chickpea improvement.


Assuntos
Cicer , Cicer/genética , Genômica
15.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805919

RESUMO

Pearl millet is an important crop of the arid and semi-arid ecologies to sustain food and fodder production. The greater tolerance to drought stress attracts us to examine its cellular and molecular mechanisms via functional genomics approaches to augment the grain yield. Here, we studied the drought response of 48 inbreds representing four different maturity groups at the flowering stage. A set of 74 drought-responsive genes were separated into five major phylogenic groups belonging to eight functional groups, namely ABA signaling, hormone signaling, ion and osmotic homeostasis, TF-mediated regulation, molecular adaptation, signal transduction, physiological adaptation, detoxification, which were comprehensively studied. Among the conserved motifs of the drought-responsive genes, the protein kinases and MYB domain proteins were the most conserved ones. Comparative in-silico analysis of the drought genes across millet crops showed foxtail millet had most orthologs with pearl millet. Of 698 haplotypes identified across millet crops, MyC2 and Myb4 had maximum haplotypes. The protein-protein interaction network identified ABI2, P5CS, CDPK, DREB, MYB, and CYP707A3 as major hub genes. The expression assay showed the presence of common as well as unique drought-responsive genes across maturity groups. Drought tolerant genotypes in respective maturity groups were identified from the expression pattern of genes. Among several gene families, ABA signaling, TFs, and signaling proteins were the prospective contributors to drought tolerance across maturity groups. The functionally validated genes could be used as promising candidates in backcross breeding, genomic selection, and gene-editing schemes in pearl millet and other millet crops to increase the yield in drought-prone arid and semi-arid ecologies.


Assuntos
Pennisetum , Setaria (Planta) , Secas , Grão Comestível , Regulação da Expressão Gênica de Plantas , Pennisetum/genética , Melhoramento Vegetal , Estudos Prospectivos
17.
Plant Dis ; 106(11): 2911-2919, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35259308

RESUMO

Macrophomina phaseolina, a fungus that causes dry root rot, is a relatively new threat to blackgram in South Asia. Because this pathogen is a polyphagic necrotroph, it remains viable in the soil for several years, making disease management challenging. One of the most economical methods for managing dry root rot in blackgram is through an integrated approach that uses resistant varieties. This study examined M. phaseolina associated with dry root rot in blackgram and screened 41 blackgram genotypes for dry root rot resistance. The present work also characterized morphological features and internal transcribed sequence regions of the nuclear rDNA operon to identify M. phaseolina from blackgram. Evaluation of the 41 blackgram genotypes against M. phaseolina by the paper towel technique identified two genotypes, CO-5 and IPU 07-3, with dry root rot resistance (disease scores: ≤3) and 18 genotypes with moderate resistance (disease scores: >3 to ≤5). Five genotypes with disease scores <4.0 and two susceptible genotypes were reevaluated using the paper towel method, which revealed moderate resistance reactions of CO-5, IPU 07-3, and MASH 1-1. To confirm dry root rot resistance of these seven genotypes, further screening was done in a greenhouse using the sick pot assay. Results revealed moderate resistance of CO-5, IPU 07-3, and MASH 1-1 genotypes. As compared with susceptible check (VO 2135-B-BL), CO-5 consistently excelled in plant survival with 13.4% disease incidence, followed by IPU 07-3 (16.7%) and MASH 1-1 (19.9%). Therefore, these three genotypes can be used as parents in blackgram breeding programs for developing blackgram cultivars with improved dry root rot resistance.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Vigna , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Ascomicetos/genética
18.
Front Plant Sci ; 13: 810632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251083

RESUMO

Livestock provides an additional source of income for marginal cropping farmers, but crop residues that are used as a main source of animal feed are characteristically low in digestibility and protein content. This reduces the potential livestock product yield and quality. The key trait, which influences the quality and the cost of animal feed, is digestibility. In this study, we demonstrate that sorghum breeding can be directed to achieve genetic gains for both fodder biomass and digestibility without any trade-offs. The genotypic variance has shown significant differences for biomass across years (13,035 in 2016 and 3,395 in 2017) while in vitro organic matter digestibility (IVOMD) showed significant genotypic variation in 2016 (0.253) under drought. A range of agronomic and fodder quality traits was found to vary significantly in the population within both the control and drought conditions and across both years of the study. There was significant genotypic variance (σg2) and genotypic × treatment variance (σgxt2) in dry matter production in a recombinant inbred line (RIL) population in both study years, while there was only significant σg2 and σgxt2 in IVOMD under the control conditions. There was no significant correlation identified between biomass and digestibility traits under the control conditions, but there was a positive correlation under drought. However, a negative relation was observed between digestibility and grain yield under the control conditions, while there was no significant correlation under drought population, which was genotyped using the genotyping-by-sequencing (GBS) technique, and 1,141 informative single nucleotide polymorphism (SNP) markers were identified. A linkage map was constructed, and a total of 294 quantitative trait loci (QTLs) were detected, with 534 epistatic interactions, across all of the traits under study. QTL for the agronomic traits fresh and dry weight, together with plant height, mapped on to the linkage group (LG) 7, while QTL for IVOMD mapped on to LG1, 2, and 8. A number of genes previously reported to play a role in nitrogen metabolism and cell wall-related functions were found to be associated with these QTL.

19.
J Biol Chem ; 298(4): 101772, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218775

RESUMO

Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.


Assuntos
Anticorpos Antivirais , Vírus da Dengue , Dengue , Epitopos , Anticorpos de Cadeia Única , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dengue/terapia , Vírus da Dengue/imunologia , Epitopos/imunologia , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico , Proteínas do Envelope Viral/imunologia
20.
Methods Mol Biol ; 2443: 273-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35037212

RESUMO

With the emerging sequencing technologies and cost reduction, the sequence data generation has accelerated from a single individual to multiple (thousands of) individuals of a species. The terabytes of sequence data generated from thousands of individuals include the majority of the redundant sequence which depends on the level of sequence similarity within the population of individuals. Managing large datasets and creating the unique catalogue sequence from such a large population is challenging to analyze, store, and retrieve the information. In this chapter, we discuss the practical haplotype graph (PHG) which addresses the above said challenges and also able to retrieve required information such as variants and sequences more efficiently, which enable researchers to manage and assess large genomic data.


Assuntos
Genoma , Genômica , Haplótipos/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...